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Two groups of pigeons were exposed to a simple reaction-time procedure in which mean
foreperiod duration was 5, 10, or 20 seconds. For one group, the foreperiods had an arith-
metic, or rectangular, distribution; for the second group, they had a constant-probability,
or Bernoulli, distribution. Under both distributions, mean response latency was an increas-
ing, negatively accelerated function of mean foreperiod duration. On a given trial, response
latency was a function of its associated foreperiod duration: latency was a decreasing func-
tion of foreperiod duration in the arithmetic distribution, and an increasing function of
foreperiod duration in the constant-probability distribution. Examination of the distribu-
tion of latencies revealed a harmonic structure reminiscent of distributions of interresponse
times under variable-interval schedules of reinforcement. Taken together, the results con-
firm and extend previous findings with human subjects, and also suggest numerous simi-
larities to behavior maintained by variable-interval schedules.
Key words: foreperiod duration, reaction time, response latency, variable-interval sched-

ules, arithmetic and constant probability, key peck, pigeons

Most early studies of simple reaction time
were concerned with the behavioral effect of
the physical stimulus. In these studies, the
interval between a warning signal and the
stimulus to which the subject was to respond,
or foreperiod, was assigned a variable dura-
tion as a method for reducing the frequency
of "anticipatory" responses: that is, responses
made before stimulus presentation or so soon
afterward as to be a dubious effect of the
stimulus itself. In more recent years, however,
the foreperiod has come to be viewed as a
determinant of reaction time that is quite
worthy of study in its own right.
When foreperiod duration is fixed within

blocks of trials, well-controlled studies, such
as that of Karlin (1959), have usually found
mean reaction time to be an increasing,
negatively accelerated, function of foreperiod
length. When, within blocks of trials, the fore-
period duration is variable, a very similar
relation is obtained between mean reaction
time and mean foreperiod duration (Klemmer,
1956; Naiiitainen, 1971; Nickerson and Burn-
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ham, 1969). Although reaction time is gen-
erally shorter for fixed foreperiods than it is
for variable foreperiods of an equivalent mean
length, the form of both functions is very
similar.

Inspection of reaction time on each trial
reveals that it covaries with the length of its
associated foreperiod. The foreperiod distri-
bution to which such a trial-by-trial analysis
has most often been applied is one in which
each of a set of foreperiod durations, differing
from one another by an additive constant, is
presented with an equal likelihood on each
trial. Such a rectangular distribution of fore-
periods corresponds to the distribution of
interreinforcement intervals in an arithmetic
variable-interval (VI) schedule of reinforce-
ment (Catania and Reynolds, 1968), though
generally without the inclusion of a 0-sec in-
terval. With this distribution, human reaction
time (Drazin, 1961; Karlin, 1959; Klemmer,
1956) and that of cats (Macar, Vitton, and
Requin, 1973) has been shown to decrease
with longer associated foreperiods. In other
words, this local relationship is the opposite
of that which describes the effect of mean
foreperiod duration on mean reaction time,
over trials. In an arithmetic distribution, the
chance that a stimulus will be presented in-
creases as the interval grows longer (cf. Flesh-
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ler and Hoffman, 1962, p. 529). Naitiinen
(1971), and others, have argued that it is this
growing conditional probability of stimulus
presentation that accounts for the shortening
of reaction time at longer foreperiod dura-
tions.

Consider, however, the situation where at
every instant in time (T) there is a constarnt
probability (p) that a stimulus will be pre-
sented. When the values of T and p are made
small, the distribution of foreperiod durations
approaches an exponential, there being many
more short foreperiods than long ones. Unlike
the arithmetic distribution, the likelihood of
stimulus presentation is independent of how
much time has elapsed in the foreperiod. This
method of generating foreperiods shares much
in common with the programming of inter-
reinforcement intervals in a random-interval
schedule of reinforcement (Millenson, 1963)
and with constant-probability VI schedules
(Catania and Reynolds, 1968; Fleshler and
Hoffman, 1962).

If the conditional probability of stimulus
presentation is an important determinant of
reaction time, then we might expect that there
would not be an inverse relation between fore-
period duration and reaction time when the
foreperiods are drawn from a constant-prob-
ability distribution. For very short foreperiods,
this expectation has not been confirmed. Nick-
erson (1967) found that the reaction time to
the second of two signals varied inversely
with the duration of the interval between sig-
nals, for intervals up to approximately 250
msec. For longer durations, however, it does
appear that constant-probability distributions
produce a quite different foreperiod-reaction
time relationship from that obtained with
arithmetic foreperiod distributions. Although
data collected by Naiitanen (1971) are gen-
erally too variable to be readily characterized,
those of Granjon, Requin, Durop, and Rey-
nard (1973) clearly indicate that with a con-
stant-probability distribution, reaction times
increase somewhat with longer foreperiod du-
rations. In other words, the effects are the
opposite of those obtained with arithmetic
foreperiod distributions.
The bulk of the studies cited above used

human subjects; the present experiment used
pigeons. Reaction time was studied under
three different values of mean foreperiod dura-
tion, with both arithmetic and constant-prob-

ability distributions. The data confirm and
extend previous findings with humans, and
also suggest intriguing similarities to the pi-
geon's behavior under arithmetic and constant-
probability schedules of VI reinforcement.

METHOD

Subjects
Eight locally obtained 1- to 2-yr-old male

homing pigeons were maintained at approxi-
mately 80% of their free-feeding body weights.
All had some prior training under a variety
of reinforcement schedules.

Apparatus
Four identical Lehigh Valley Electronics

three-key pigeon chambers were used. Pecks
on the center key with a force greater than
0.15 N activated the recording and control
equipment; pecks on the side keys had no
effect. White masking noise was continuously
provided via a speaker in the chamber. A
Digital Equipment Corporation PDP-8F com-
puter arranged contingencies, presented stim-
uli, and recorded response latencies in units
of 0.01 sec.

Procedure
The experimental paradigm. The procedure

established over the course of 18 initial train-
ing sessions is illustrated in Figure 1. Each
session was composed of 200 trials in which
the response key was illuminated with a red
light for a period of up to 2 sec. A peck dur-
ing the first second of key illumination pro-
duced a 2-sec reinforcement period in which
grain was made available. A peck between
1 and 2 sec after stimulus onset turned off
both the keylight and the houselight, but it
was not reinforced. Each stimulus presenta-
tion was preceded by a variable-duration fore-
period (houselight on) and followed by a 2-sec
blackout (houselight off). A peck during the
foreperiod produced a 4-sec timeout (house-
light off), after which the foreperiod began
anew.
A short reinforcement duration and fine

kernels of grain were used to permit a rather
large number of trials per session without
subject satiation. The reinforcement of only
those responses to occur within 1 sec of key
illumination (but the recording of latencies
of up to 2 sec) was done in order to maintain
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Fig. 1. Illustration of the experimental paradigm.
Illumination of the houselight (SI) signalled the begin-
ning of a trial. After the foreperiod had elapsed, the
key was illuminated with red light (S2) for at most
2 sec. If a key peck (R) occurred within the first second
of key illumination, it was followed by a 2-sec period
of grain presentation (RFT), during which the key-
light and houselight were off, the latter returning
2 sec later to signal the beginning of a new trial. If
a response occurred in the second I-sec portion of the
2-sec period of key illumination, it was not reinforced:
its latency was recorded, the keylight was extinguished,
and, at the end of the 2-sec period, the houselight was

turned off for 2 sec. If no response occurred during the
2-sec period of key illumination, the houselight went
out for 2 sec and no reinforcement was presented. A
response emitted during the foreperiod was followed
by a 4-sec removal of the houselight (timeout), after
which the foreperiod began anew.

fairly short latencies without so constraining
this measure as to make the effects of fore-
period duration unobservable. The 2-sec post-
stimulus blackout was intended to provide
sufficient time for the pigeon to reorient to
the key, and thus avoid an artifactual length-
ening of response latencies after short fore-
periods. Finally, the dependency whereby re-

sponses during the foreperiod produced a

timeout and restarted the foreperiod, was

instituted in order to reduce the frequency of
such responses and, thus, of latencies with a

spuriously short duration.
Foreperiod distributions. Two types of fre-

quency distribution, each with three different
mean values, were examined. In the first, fore-
periods were distributed arithmetically at 1-sec

intervals. The minimum duration was 1 sec,

and the maximum duration equalled twice the
mean value, minus the 1-sec minimum dura-
tion. In this manner, a series of foreperiods
was calculated that had means of either 5,
10, or 20 sec. Within a session, this series was

repeatedly presented in a different, random-
ized, sequence. Since 200 trials per session was

never an integral multiple of the series length,
those trials at the end of the session that con-

stituted a fraction of the length of the series
were assigned foreperiods in a quasirandom
fashion, without replacement, in such a man-

ner as to maintain the appropriate mean fore-
period duration. For each of the three arith-
metic distributions, four different randomized
sequences of 200 foreperiods were generated
and presented in an irregular order across suc-
cessive sessions of a condition.

In the constant-probability distributions,
the minimum foreperiod duration, as well as
the minimum difference (T) between dura-
tions, was also 1 sec. When the mean fore-
period duration (m) is assigned values of 5, 10,
and 20 sec, and then substituted in the equa-
tion p = T/m, the probability (p) that a stim-
ulus will be presented at each full second of
the foreperiod is determined (respectively,
0.2, 0.1, and 0.05). These probabilities can in
turn be used to determine the theoretical fre-
quency of a foreperiod of exactly k sec from
among the N (200) session trials by substitu-
tion in the formula below:

f(k)=p(l- p)k-l1N
Since frequencies must be whole numbers to
be of use, the theoretical frequency, f(k), was
rounded to the nearest whole integer. As k is
increased, the theoretical frequency eventually
reaches values of less than one. In this case,
each successive 1-sec increment of the fore-
period duration was assigned a frequency of
one, until all 200 session trials had been ac-
counted for.
We felt that this method of generating a

constant-probability distribution was better
suited to our purposes than that of Fleshler
and Hoffman (1962), or to a similar method
discussed by Catania and Reynolds (1968, Ap-
pendix II, p. 381), because, like the arithmetic
schedule, it maintained a 1-sec minimum fore-
period duration and stepwidth. Furthermore,
the large number of durations in the series
(200) prevented an abrupt increase in condi-
tional probability at twice the mean dura-
tion, an undesirable characteristic of an other-
wise very similar schedule used by Catania
and Reynolds (1968) in their third experiment.
Finally, the method was also preferable to
a purely random determination of foreperiod
duration, since it avoided the possibility of
extremely long foreperiods and fluctuation of
the mean duration over sessions.
Schedule conditions. Following recondition-

ing of the key peck, the eight pigeons were
divided into two groups of four. The first
group was exposed to arithmetic distributions
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Table 1

Summary of mean data from last 10 sessions, each with 200 trials, under mean foreperiod
(FP) durations of 5, 10, and 20 sec, for four subjects with arithmetic FP distributions and
four with constant-probability distributions. SD is the standard deviation of the 10 mean
session latencies. The values for Pigeon F7 in the 5-sec condition are based on only eight
sessions because of a problem in data retrieval.

No- Nonre-
FP No. of Latency FP Resp. inforced

Subject (sec) Sessions (sec) SD Resps. Trials Resps.

ARITHMETIC
Fl 5 17 0.45 0.01 0.0 0.9 3.1

10 15 0.53 0.02 0.8 10.3 8.8
20 17 0.54 0.04 0.6 3.8 7.4

F2 5 15 0.47 0.03 4.1 2.7 7.1
10 17 0.60 0.03 0.5 6.7 18.1
20 31 0.64 0.04 0.5 14.8 31.2

F3 5 16 0.63 0.01 0.0 4.2 2.2
10 17 0.75 0.03 0.1 4.2 6.4
20 15 0.84 0.02 0.1 4.0 17.2

H2 5 16 0.48 0.04 0.4 2.3 3.0
10 15 0.62 0.08 1.7 3.5 16.0
20 18 0.67 0.07 1.0 21.0 19.3

CONSTANT PROBABILITY
F4 5 15 0.52 0.04 16.1 2.2 5.5

10 19 0.58 0.05 40.5 9.4 12.1
20 18 0.63 0.06 19.3 4.0 5.1

F5 5 15 0.58 0.03 1.1 1.3 3.5
10 18 0.72 0.04 4.3 3.0 12.9
20 18 0.81 0.04 1.6 4.1 24.2

F6 5 17 0.41 0.04 0.4 2.0 3.9
10 15 0.51 0.03 0.6 1.4 14.5
20 17 0.43 0.02 0.9 1.7 2.9

F7 5 15 0.60 0.03 0.3 10.0 3.4
10 17 0.70 0.03 0.8 5.2 18.6
20 29 0.74 0.02 0.2 9.8 14.5

of foreperiod duration, whereas the second
group was exposed to constant-probability dis-
tributions. The reaction-time paradigm, dis-
cussed above, was established with a mean
foreperiod duration of 10 sec for pigeons of
both groups. Then, as shown in Table 1, at
least 15 additional sessions were conducted
with a 10-sec mean foreperiod duration. The
pigeons were then exposed to foreperiod dis-
tributions that had mean durations of 5 and
20 sec, respectively, for a minimum of 15 ses-
sions at each value. The order of the pigeons'
exposure to these distributions was the same
for both groups, and conditions were changed
when, over a 10-session period, mean reaction
time appeared to be stable.

In general, the data analysis was based on
the last 10 sessions of a condition. Occasion-
ally, however, because of a problem in data
retrieval, or because of either an unusually

high frequency of responses during the fore-
period or of stimulus presentations to which
the pigeon did not respond, a session was
excluded from the analysis and subsequently
compensated for with an additional session.

RESULTS
Data from the last 10 sessions of each of

the three mean foreperiod conditions are sum-
marized in Table 1 for pigeons of both the
arithmetic and constant-probability groups.
As shown in the table, a very low frequency
of responses during the foreperiod was main-
tained for all pigeons except F4. As might be
expected, foreperiod responses were least fre-
quent during the shortest, 5 sec, foreperiod
duration. However, these responses tend to be
more frequent at the 10-sec duration (the
value to which all subjects were first exposed)
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than during the last, 20-sec, condition, an
effect that suggests a gradual reduction in the
rate of such responses over conditions of the
experiment.

Trials in which the pigeons did not respond,
or in which a response had a latency of greater
than 1 sec and was thus not reinforced, were
not systematically related to mean foreperiod
duration, although, for several of the pigeons
of the arithmetic group, both of these mea-
sures appear to increase somewhat with length-
ening foreperiod durations.

In Figure 2, mean response latency, or reac-
tion time, is shown as a function of mean fore-
period duration for pigeons of both groups.
Except for Pigeon F6, all of the functions can
be characterized as increasing and negatively
accelerated. Furthermore, there does not ap-
pear to be any systematic difference between
the two groups: mean reaction time appears
to depend on mean foreperiod duration, not
on the form of the foreperiod distribution.

Figure 2 further indicates that the latencies
obtained in this situation were relatively long
when compared with human or animal experi-
ments involving a constrained motor response
(e.g., Saslow, 1968; Stebbins and Lanson, 1961).
A more detailed analysis of reaction time

as a function of foreperiod duration is pro-
vided in Figure 3. Here, latency is plotted as
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Fig. 2. Response latency as a function of mean fore-

period duration under arithmetic and constant-prob-
ability foreperiod distributions. Each point is the
arithmetic mean over 10 sessions.

a function of the duration of the immediately
preceding foreperiod. This has been done for
each pigeon under each of the three mean
foreperiod conditions, under both the arith-
metic and the constant-probability foreperiod
distributions. To provide an indication of the
generally linear trend that seems to charac-
ize these data, straight lines, fitted by the
method of least squares,2 are drawn through
the data points. No attempt was made to fit
the data of Pigeon F4 under the constant-
probability distribution with a mean of 5 sec,
since the pattern of latencies appears non-
linear. Also excluded from these calculations
were the response latencies at all short fore-
period durations of Pigeon Fl, as well as the
first mean response latency of F3 in the 5-sec
condition. These portions of the functions
appear clearly nonlinear, and regression co-
efficients were calculated from the highest
point in each function.
The range of foreperiod durations for which

response latencies are plotted for the constant-
probability distributions has been set equal
to the range of the corresponding arithmetic
distribution. In fact, foreperiods of the con-
stant-probability distributions extended to 24
sec in the 5-sec condition, to 37 sec in the 10-
sec condition, and to 65 sec in the 20-sec con-
dition. Because of their relative infrequency,
determinations of response latency at these
long foreperiod durations were more variable,
and thus have been excluded from the figure.
With the exception of the data of Pigeon F3,

the regression lines all have negative slopes
when the distribution of foreperiods is arith-
metic, whereas under the constant-probability
distribution, all regression lines have a posi-
tive slope. In other words, when the condi-
tional probability of stimulus presentation in-
creases with time (the arithmetic distribution),
the pigeons tend to respond more quickly at
longer foreperiod durations; when the condi-
tional probability is constant, the birds tend
to respond somewhat more slowly at longer
durations of the foreperiod.
We are at a loss to explain the apparently

deviant performance of Pigeon F3: nothing

2The best-fitting straight lines are shown for illustra-
tive purposes only. In the constant-probability distri-
bution, the number of observations decreases with in-
creasing foreperiod duration, but the fit was done
without giving greater weight to shorter foreperiod
durations.
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Fig. 3. Mean response latency as a function of the preceding foreperiod. Mean data from 10 sessions are shown
for arithmetic and constant-probability distributions, each with three different mean values.

in the bird's behavior during the foreperiod
or in its experimental history appeared at all
unusual. This pigeon generally had the long-
est mean latencies of all subjects, as seen in
Figure 2, but, in all other respects, the bird's
data are virtually the same as those of sub-
jects in the constant-probability group. It
simply appears that F3's behavior did not

come under the control of the temporal cues

associated with a rising probability of stimulus
presentation under the arithmetic foreperiod
distribution.

In Figure 3 there is a tendency for the slope
of the regression lines to increase with re-

ductions in the mean value of the foreperiod
distribution. This effect is most obvious with
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the arithmetic distribution, but it can also
be discerned in the data obtained under the
constant-probability distribution. This find-
ing suggests that the three curves in each
panel would be more nearly parallel if, for
each of the three conditions, foreperiods were
expressed in units relative to the mean of the
distribution. All distributions would then have
the same range.
The results of this transformation are shown

in Figure 4, where each foreperiod duration
has been divided by the mean of the fore-
period distribution. A similar transformation
has been performed on response latency. To
equate differences in the overall latency under
the three distributions, each latency has been
divided by the mean latency obtained under
that distribution.
When plotted in this manner, there is no

very great difference in the data obtained
under the three mean foreperiod durations.
It becomes clear that the form of the functions
relating local response latency to foreperiod
duration depends not on the absolute fore-
period duration, but on the duration of the
foreperiod relative to that of the other fore-
periods in the distribution to which the pi-
geon is exposed. Again, for three of the four
birds exposed to the arithmetic distributions,
relative response latency is a generally de-
creasing function of relative foreperiod dura-
tion, whereas, for the constant-probability
distribution, the functions are all increasing.
There is a suggestion of nonlinearity in the
data of Pigeons Fl, F2, and H2, all of which
were exposed to the arithmetic distribution.
Under the 5- and 10-sec mean foreperiod dura-
tions, the first point in the functions of all
these birds is lower than the second. In the
20-sec condition, this reversal is evidenced by
only one bird, H2.

Figure 5 shows the relative frequency of
response latencies in class intervals of 0.01 sec.
Under both distributions, these curves have
a distinctly multimodal character: the first
mode generally lies between 0.18 and 0.23 sec,
the second between 0.36 and 0.45 sec, and the
third between 0.62 and 0.70 sec. This figure
clearly demonstrates that the increase in mean
response latency that attends longer mean
foreperiod durations is not due to a general-
ized shift of latencies toward longer values.
Rather, it is due to an increase in the propor-
tion of latencies that fall in the longer modal

1.5

1.

>- 0.
C-)
z 1.5
w
I-j

Uji 1.0
L)
z
0
CL
111-w.
z 1.5
z

w
I

1.0
0
w

-, 0.5
0'
< 1.5

1.01

* arithmetic constant

&~~~~

. 5s.c
Fl F4 *[0sjc

A*~~~~~~~
A ~~AI

F2 F5
I I I' I I 1

A

F3 F6
_ V I I I I

aI-piglot,f

F7H2

0 0.5 1.0 1.5 2 0 0.5 1.0 1.5 2
FOREPERIOD DURATION

(RELATIVE TO AVERAGE FOREPERIOD)
Fig. 4. Adjusted response latency as a function of

the relative duration of the immediately preceding
foreperiod, under three different mean values of the
foreperiod distribution. Relative foreperiod duration
is the foreperiod's duration, divided by the mean of
the foreperiod distribution. Adjusted response latency
is the latency at each relative foreperiod duration, di-
vided by the mean latency across all relative foreperiod
durations of a condition. For graphical convenience,
only nine different foreperiods are shown for the 10-
and 20-sec distributions (seconds 2, 4 . .. 16, 18 of the
10-sec distribution, and seconds 4, 8 . . . 32, 36 of the
20-sec distribution). The relative duration of these fore-
periods is the same as that of the nine foreperiods of
the 5-sec distribution (1, 2 . . 8, 9 sec).

classes of an otherwise stationary latency dis-
tribution.

It might be speculated that the multimodal
latency distribution obtained under a given
distribution of foreperiods is due to the addi-
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Fig. 5. Relative frequency of response latencies of 1 sec, or less, in class intervals of 0.01 sec for pigeons

exposed to either arithmetic or constant-probability distributions.

tion of unimodal latency distributions under
each of the different foreperiods that make up
the distribution. In other words, short fore-
periods might be associated with a latency
distribution whose mode lies at a low value,
and long foreperiods might be associated with
a high modal latency. Thus, when long and
short foreperiods are mixed, they would pro-

duce a complex multimodal latency distribu-
tion of the type shown in Figure 5.
That this is not the case, is clearly shown

in Figure 6. In this figure, illustrative latency
data are presented from two pigeons under
the 5-sec condition. Latency distributions are
shown separately for each of the foreperiods
that make up the distribution. It is evident
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that latencies are multimodally distributed
under each of the foreperiods that make up
the distribution. For Pigeon F2, the fore-
periods were distributed arithmetically, and
the proportion of latencies at the shortest, 0.20-
sec, mode increases as foreperiod duration
goes from 1 to 9 sec. Pigeon F6, on the other
hand, was exposed to a constant-probability
distribution. For this bird, latencies in the
shortest modal class decrease, while those in
longer classes increase, as the foreperiod dura-
tion lengthens.

DISCUSSION
Research using human subjects and variable

foreperiods has shown mean reaction time to
be an increasing, negatively accelerated func-
tion of mean foreperiod duration, both when
foreperiods have a rectangular, or arithmetic,
distribution (e.g., Karlin, 1959), and when they
have a Bernoulli, or constant-probability, dis-
tribution (e.g., Nickerson and Burnham, 1969).
The present data from pigeons confirm these
findings. They show further that the functions
relating mean foreperiod duration to mean
reaction time are very much alike under both
types of distribution (see Figure 2).
The data from three of the four pigeons

that were exposed to an arithmetic distribu-
tion of foreperiods also confirm previous

arithmetic

findings with human subjects. Reaction time
on a given trial decreased as a function of the
length of the immediately preceding fore-
period. With an arithmetic distribution of
foreperiods, the longer the time that has
elapsed since the beginning of the foreperiod,
the more likely it becomes that a stimulus
will be presented. Apparently, the reaction
time of pigeons, like that of humans, may
come under at least the partial control of
the conditional probability of stimulus pre-
sentation.

Supportive of this conclusion was the find-
ing that when stimuli had a constant prob-
ability of presentation, there was evidence of
an increase, not a decrease, in response la-
tency as a function of immediate foreperiod
length. With the constant-probability distribu-
tion of foreperiods, the passage of time in the
foreperiod is not correlated with a change in
the likelihood of stimulus presentation. Hence,
the slower reaction times at longer foreperiods,
under this distribution, is an effect that can-
not be attributed to discriminative properties
of the foreperiod. A very similar effect is to
be seen in Granjon et al.'s (1973) study of
human reaction time under constant-proba-
bility foreperiod distributions.
The present experiment further demon-

strates that the effect of the foreperiod on
the subsequent reaction time is not absolute.

constant

.2 A .6 .8 10 .2 A .6 .8 1.0

RESPONSE LATENCY (sec)
Fig. 6. Relative frequency of response latencies for each foreperiod in the 5-sec condition. Foreperiods were

arithmetically distributed for Pigeon F2, whereas they had a constant-probability distribution for Pigeon F6.
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The local effects of foreperiod duration appear
to depend, instead, on the duration of the
foreperiod relative to that of the other fore-
periods in the series. If overall mean reaction
times are equated, and if foreperiod duration
is expressed in relative units (Figure 4), then
functions relating reaction time to immediate
foreperiod duration are very much alike for
mean values of either 5, 10, or 20 sec, under
both arithmetic and constant-probability dis-
tributions.

Similar effects of interval schedules of rein-
forcement. The effect of varied foreperiod
duration on response latency is strikingly like
that of varied interreinforcement-interval du-
ration on rate of response. Under an interval
schedule of reinforcement, a response is rein-
forced only when a certain amount of time
has passed since the onset of a stimulus or
since the end of the last reinforcement. This
period of time may vary from one interval
to the next, as in the VI or variable-interval
schedule, or it may remain constant, as in
the FI or fixed-interval schedule. In general
terms, the simple reaction-time paradigm used
in this experiment resembles the VI schedule,
the principal differences being that the avail-
ability of reinforcement was signalled, and
responses before that signal were suppressed.

Noting that response rate is reciprocally
related to response latency, an enumeration of
several well-established findings regarding FI
and VI schedules suggests more than an
incidental correspondence with the effects of
fixed and variable foreperiod durations.

1. Responding under Fl schedules is char-
acterized by a pause after reinforcement, fol-
lowed, about midway in the interval, by a
rapid acceleration to a high steady rate. Re-
sponse rate in the second of these states is
a decreasing, negatively accelerated function
of the interreinforcement-interval length
(Schneider, 1968).

2. While local response rate is more nearly
constant under VI schedules, mean response
rate, however, is also a decreasing, negatively
accelerated function of the mean interrein-
forcement-interval duration. Although re-
sponse rate in the second state of Fl schedules
is generally higher than mean rate in compa-
rable VI schedules, both show a similar decline
with increasing interval duration (cf. Schnei-
der, Figure 8).

3. Comparison of arithmetic and constant-

probability (i.e., random-interval) schedules
reveals little differe-nce in the effect of varia-
tions in the length of the mean interreinforce-
ment interval on rate of response (cf. Catania
and Reynolds, Figure 25).

4. Local rates of response under arithmetic
VI schedules increase monotonically as the
time elapses since the last reinforcement. Fur-
thermore, when plotted as a function of
relative time since reinforcement (in the man-
ner of Figure 4 in the present study), adjusted
rates of response are generally quite similar
for arithmetic VI schedules with different
mean values (Catania and Reynolds, Figure 3).

5. Unlike the arithmetic schedules, local
response rate under constant-probability VI
schedules rises rapidly after reinforcement
delivery, but then remains quite stable as time
passes since reinforcement (Catania and Reyn-
olds, Figures 11 and 12).

All of these effects of Fl and VI schedules
are at least qualitatively very similar to the
effects of fixed and variable foreperiod dura-
tions on reaction time. Of particular interest
for the present study is Catania and Reynolds'
(1968) finding that local response rate under
VI schedules is influenced by the conditional
probability of reinforcement delivery (or, in
their treatment, by the local rate of reinforce-
ment-a measure derived from the conditional
probability which attempts to describe a re-
inforcer's temporal spread of effect). With
arithmetic VI schedules, for example, they
found that response rate increased as a func-
tion of the time that elapsed since the last
reinforcement. Our findings were similar: with
an arithmetic distribution of foreperiods, re-
sponse latency decreased as a function of time
elapsed in the foreperiod.
With constant-probability VI schedules, Ca-

tania and Reynolds reported an initial in-
crease in response rate shortly after reinforce-
ment, but thereafter very stable rates up to
durations equal to twice the mean interval
length. In our study, we also found that a
constant-probability distribution had effects
on local reaction times that were clearly dif-
ferent from those of an arithmetic distribu-
tion. However, unlike Catania and Reynolds'
result, there was a clear tendency for latencies
to increase somewhat, rather than remain
constant, as a function of the time that had
elapsed in the foreperiod.
Many procedural factors might be respon-

28



REACTION TIME 29

sible for this difference in results. One such
factor might be that in the constant-probabil-
ity schedule used in their Experiment 3, the
longest interval duration was equal to approx-
imately twice the value of the mean. Thus,
the conditional probability of reinforcement
rose abruptly to 1.0 at this duration. It may
be that this increase in reinforcement likeli-
hood served to maintain constant rates that
would have otherwise declined somewhat had
intervals in the distribution extended to longer
values, as they did in our experiment.
Whatever the reason for this rather small

discrepancy in results, it appears that gener-
ally, the effects of foreperiod duration on re-
sponse latency are very like the effects of inter-
val duration on response rate. This conclusion
is most strikingly confirmed in the distribu-
tions of response latency (Figure 5) obtained
under arithmetic and constant-probability dis-
tributions with mean durations of 5, 10, and 20
sec. The multimodal character of these distri-
butions, and even the temporal spacing of
these modes, is very like that of interresponse
time (IRT) distributions under variable-inter-
val schedules of reinforcement (Farmer, 1963;
Smith, 1974; Spealman and Gollub, 1974).
By comparing our Figure 5 with Farmer's
Figure 6, it is apparent that lengthening mean
foreperiod durations affect the distribution
of response latencies in the same manner that
lengthening interval durations affect the IRT
distribution in VI schedules. In both cases,
lengthening mean durations causes a decrease
in the frequency of responses in short modal
IRT or latency classes and a corresponding
increase at long modal classes.

In short, the pigeon's reaction time appears
to be analogous to the IRT of its terminal
response in an interval schedule of reinforce-
ment. Visual observation of the pigeons further
supported this conclusion: during the fore-
period, all birds made pecking movements in
the direction of the key. Usually either the
beak did not strike the key or else the force of
the peck was insufficient to cause electrical
contact.

Further extensions to human reaction-time
research. Investigators of human reaction time
have seldom presented individual reaction-time
distributions with a resolution fine enough
to determine if the multimodality reported
here for the pigeon is also a general character-
istic of human performance. In one study that

did so, however, very similar periodicities
were evident in the distribution of the reaction
time of a verbal response (Venables, 1960).
Similarly, Michon (1967), in a finger-tapping
tracking task, obtained multimodal distribu-
tions of intertap intervals.
The human reaction-time situation seldom

permits direct observation of responses dur-
ing the foreperiod that are of a sub-criterion
level. However, when finger tremor has been
measured during a manual reaction-time task,
it has been found to be rhythmic. Just as the
pigeon's key peck often appeared to be a con-
tinuation of its bobbing head movements
during the foreperiod, so too does the human's
finger press occur as a continuation of the
downward moving portion of the tremor wave
(Lansing, 1956; Travis, 1929).
Human reaction time is often discussed in

terms of the subject's expectancy, time-uncer-
tainty, or set (cf. Sanders, 1966). To the degree
that the subject's behavior during the fore-
period remains unobserved, such terms denote
little more than the observed relation between
reaction time and foreperiod duration. The
present results and their similarity to effects
observed under variable-interval schedules of
reinforcement, suggest that future research
might make use of procedures, such as Hol-
land's (1957) observing-response technique,
which incorporate elements of both the simple
reaction-time paradigm and interval schedules
of reinforcement. In this way, behavior dur-
ing the foreperiod could be measured directly.
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